
AD-A124 16 ESTIMATIONd IN THE PEISIECI OF N0ISE OF A SIGNiAL WHICH 1/0
is F LA T EXCEPT Faa I(UP MASSACHIISKTTS INST OF TECH
CAMBRIDGE STATISTICS CENTER V VAG JAM5 63 TR-OM-23

UNCLASSIFIlED NOOd 16 5C-0166 F/g 12/1 NIL



IIII111I I I1 .c

2- 3.2 12.5

L1:. Z 2.2

11.... . .,..,, ..

1..8

1.25 '.4 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 963



ESTIMATION IN THE PRESENCE OF NOISE OF A SIGNAL WHICH IS

FLAT EXCEPT FOR JUMPS - PART I, THE EMPIRICAL

44 BAYES APPROACH

By

LLU
YI-CHING YAO

MASSACHUSETTS INSTITUIE OF TECHNOLOGY

-- TECHNICAL REPORT NO. ONR 28

I-- JANUARY 1983< - DTIC
CJD PREPARED UNDER CONTRACT D T EC

N00014-75-C-0555 (NR-609-OO1) C FB3 13

FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in whole or in part is permitted for B
any purpose of the United States Government

This document has been approved for public release

and sale; its distribution is unlimited

83 02 03 018

. ... .. . ,-. , ' i ,, ' . w, w,"! = " "



Estimation in the Presence of Noise of a Signal Which 1. introduction

is Flat Except for Jumps - Part 11, The Empirical This is the second of a two-part paper. We consider

Bayes Approach the problem of estimating a signal which is a step function

when one observes the signal plus noise. In other words.

Abstract in discrete time denote the signal process by 
1
,u

2
,
.

.*-T
and let un. = Un except for occasional changes. Let

This is the second of a two-part paper. In the first the observations Xn - Un + c n  -I _ n < T where the n

part Yao (1982), a special Bayesian Model A is studied in are noise. we are interested in estimatin un based
on x

i
, 1 i T. In the first part Ya (1992) , we

detail. In this part, a more general model is proposed

and studied in an empirical Bayes framework. The results studied this problem in a Bayesian framework. A special

for Model A are applied to step-function signals using Bayesian model (to be called Model A) was proposed there

the ideas of empirical Bayes and maximum likelihood and the corresponding Bayes solution was derived and

applied to the perameters of the Bayesian Model A. An evaluated analytically and numerically. In the second

efficient computational method Is proposed to approximate part, we will invoke the ides of empirical Bayes to attack

the likelihood function under Model A. Several empirical more general cases where not all of the assumptions of

Bayes estimators of the unknown step-function signal are model A are satisfied.

compared by simulation. In the next section, a generalization of Model A is

proposed. In Section 3. partial results are obtained on

identifying the underlying distributions and estimating

optimally the step-function signal. In Section 4. the

Key words: Change points, nonlinear filtering, smoothing, results for Model A are applied to mre general step-
empirical Bayes, maximum likelihood, pseudo

maximum likelihood, Kullback Information. function signals using the ideas of empirical Bayea and

A.S 1980 subject classification: Primary 62M20,93214;

secondary 62C12, 62G95, maximum likelihood. In Section 5, an approximation to

9"3311 the likelihood is proposed and this approximation ts

evaluated in term of the Rullback information. In

-s
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Section 6, several empirical Bayes estimators are studied (w) Let Y, Y0 .Y1 ,Y2 o... be i.i.d. (F ) and

by use of simulation. represent successive heights of the signal. i.e., define

2. A General Dayesian M the sianal process (P.) to be

In this section we propose the following model.

(1) The time intervals between successive changes in On Yk for y n

the signel are i.i.d.

(2) The successive heights of the signal are i.i.d. W) let the additive noise cc ... cT beAi.i~d. (F ). Assume Er - 0. Let the observations be

(3) The additive noise is an i.i.d. sequence.

To be more specific,

(W) Let C.E,, 2 .C3,... be i.i.d. (F), positive n n +% nl T

integer valued with finite first moment . Let C, be
Note: Model A is a special case of this general modelindependentt of (C0 ) and -

when Fk is geometrical and Fy and Fr are normal.

Pr(C-i) - Pr(Ei)/E L-I,?.... Model A can be described by four parameters p,e,avPr( '=i)~~~1- 2 P2 l/ 112,. ~~)
where Pr(E-i) - P ,-P) . -N(.c

2
) and F -l(O~c 

2
).

Oefime the sequence of change points {r) by Suppose FC FYI and are not known. Two

natursl questions arise:

(01) Are they identifiable?
020,T W. n2 )(2) Can pn be estimated 'optimally*?

Note.t Yh random variable EC is introduced in order that

the 0-1 sequence generated by ((ones at th We designate the subsequence ( Xnr i ' n j) by
X and we shall call estimetes jit(X,T) of V

6n sanero elsewherel be statI onary. This is a matter
mfo e syweotically raltiwe to PfFly, and

of convenience and is not essential as far as asyMtotic
r € if

results are concerned.

-Mr- I t

I
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lim [Dn (XlT C _UnI T '
The proofs of (3.1) and (3.2) appear in the Appendix.

We have

lim R (FEFyP )(Itp y1FC) (UniX
T ) 

-Un
2

13 I~x+ r O (Y,+E1). (Y +)+( 1-0 )E(Y ()-YY 2B

uniformly for n-l,2,...,T, where pi - Pr(E- i) and

where EF ,Fy,} means expectation according to the (.4) 0t Pr(f2 1 +0) - i
" k-I~t i=k

probability atructure determined by y and PC"

This definition is consistent in essence with that in

Robbina (1964). 1 i (i-t)pi/En

3. Partial Answers to (01) and (2) .- -"

Proposition 3.1 (Strong Consistency of p ) p -
- p £ Pj)/EErAaa that fxWdylx) <, tXadP(x) -, Var(Y),O. i i -ir

and R '.. Then there is an estimate Ft such that

]P *r W.p.!. £ -

-(BE~- ipi t j)EProof of Proposition 3.1 i- i i1*t

Although (Xn ) is not a weakly dependent sequence,

the following are still true. t-1 -/
- |lIt - £4 [ (t-ilP 1 1/KC

i-I

(3.1) lim X ? a..., i ' M 4.
T- n-il* = In particular. I  1.

Substituting in (3.1) and (3.2), we have, as

(3.2) lie T : +t - iX0S a.m.. )' ,. B ' < 4. *

. .Ium li I I-I



-6-

T(3.12) B 1  l 2 X 2 01 (EY
4 +2 c 2 

B
Y 2+

M 2 1

(3. 7) A Iy .X4 
T n 

s

n l

(3.6) A2 1 T x 2 BY 
2 

E (1-p 
+(Y( as.( 

Y2)2+2 C2B , E ) e

ni nn1 1

Using (3.) through 
1(3.12) we shall show that a0s

T x3 By y
3 

+ 32Ee 
2 

+ RE 
3 

*a., can be consistently estimated. Pirst It: may be seen that

(3.1) A 3= T 
nil 

2 n(3Y2 .! 23 )2. 2 n-B 
5

I-)n(n 2 13A me
2 

cs Ie 2 ) I (s p r t 2A 3 A an 8 2 +or then E- ^ 1and

(3.1) A4=3 I n  air
4 
*p (Ey'.23c

2
6143t

3
3) wa o itigi h

4
sgnltrmth oiewih.

2 4 2

+A I Al-A 2 _- 3+ 4 1 + A hI  { 3- 3A I A ) (B I-A 12 )-A I A ' A '8'

T-1

(3.9) 9-= I ~ XnXnli 91
E Y  
f2 (1-01 HEY) 2 a.@.

AX2 (nl-A 2)-nl(XA A-A 2,) (a3- 4 )A 2 - 0 (T--) e.g.

(3 10 a2= 1 T x O(BY 3,2 y) + (11.O ) (KY2 Ey z 2 Y) e.g.
(3.13 - n l Xnnl '21The case where 01 - 0 is special. for then RE[ - I and

a change takes place at each time pix)nt. Then there is no

4+ 2 3 ay to distinguish the signal from the noise without
(3 . 1 1 ) 9 3 = x I (nBn. 1 I n4 " 2 E c3C T B )

if ! nn1 'P additional informtion. rOr this reasion we considler two

crises :

39T32 2(B) +RC3 Y~(s A) owen a I-A! •T
- 1 / , 

estimte P1 by ;I- 0 and

therefore estimate T by al. the distribution with

uni~t mesga at 1.



(2) When BI-A2 T T
1 / 3 , 

estimate BY
2  

by the larger p, -0, k •(loql + 1.
I=

solution (denoted by By 2 of the quadratic equation

((1Y
2 ) 

- 0. Since n(A 12) - 0, y2 > A
2
. It will be Now, we show that the estimate of F -s consistent.

shown iy2 Ey
2 

(CT) A.S. when P1> 0. By 13.5) and There are two different cases:

(3.9), estimate P, by 6,c sn((9IAj)/jY
2

-A).1)
" 
By

(J.4j, estimate E by 1/(141). By (3.e and (i) If Pr(R
1  

2) = 1, i.e. P01 . 0, then

(3.3). estimate o
t  

by OX - 2 .A2[6 1. -nntA1)/(EY-A1)

for 2 < I < flog T Ii. Applying (3.4) which relates A 1  
(E¥) (T) a.m.

a 1 nd Pe, we are led to introduce. k recursively

by BI *0IEY + (1-01)(EY) - (BY) fT
+

) a..

2 - 3C(1-,) Since (Xn is i.i.d., we can apply the law of the

iterated logarithm (Philipp and Stout (1975), p. 26).

and

A 
1 

2 - a 0 ( V0 .' oT/T ) a.s.

k-l k-i-
- ip+(k+I)(l- i4 p ")-i-( k 2,.....tiog)

Thus, 8 A
12 <T -1/3 for T large enough. So

Let 00 estimate Pl P2' "." by i - 6, for T large enough. This proves the consistency

when P - 8.

(ii) If Pr( - 1-f< 1. 1.e. 0. then

k-i k-1

- max(uin(-i i k ' I)  
. k.2,3..ogl

lia A, - (XT)
2 

< 4 11-o)(EI) * ie a. ..

u tok T
1 /  

for(lg i - I ~ i using te easmaption Var 1), O . SO 5B- 1  Vt fo

i- 2-/

.. .•. m unmll mm m as1 llI il E mi
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T large enough, Since G(1Y2). 0 (T- and C2(A12 0 Finally, since list

and A2 is bounded away from (and below) Ly
2  

for T is at P s
Iis a consistent estimate of PC . a

large enough, i,2. E (T-) a.m. So, from (3., Having established Proposition 3.1, it Is important to

--'Min ((b l-AI12)/('y2- 1 2) ,)U. oI(T-) a.m. Also, from note that with the use of Euations(3.5) - (3.12) we can

(3.4), E -1/(l-;i), EC (T- I a.*. show that Ey
2
, Ey3. Ey

4
, Er

2  
Ed, and E

4  
can be con-

Now, we will show by Induction that for all kl. aistently estimated when i 0.

;k- Pk (T-) a.@. From (3.2) with (a,B) - (1,1) To approach question 02, we derive

T-t 1 +-M Proposition 3.2
e n 

1
n~n+2'1(+)21 Asume that ZE

2
< Pr(E=l)< 1, Fy -

) 
and

Fc 0,c2 and
F o all k ) where Fex8s 2 are unknown. Then

- 01(ry
2
EE

2
) 4 ~for all k I there exist g (',) suhtaOffY 2_-(EY) 

2 ) 
4 (NYr)

2  
a.$. n (,T uhta

(k) 2 .E(Efjn xn~k n2
Tlie E(gnk) (Xi.T) - in) - E(E(u n n-k) us|

2

g o , ; I " ' Y n " ' . 2 _2 . l , ). P , ( T_ ,) ..
n Auniformly for n-k+l,..T-c(T)

How, suppoe it* Pi (7-) as,. for il,2where (T) is a arbitrary ositie inteer valued,

Prom (3.4), h ( ____r___ _ _____er _alued

increasing "nbounded function.

k- Proof of Pr poeition 3.2
0k

1
t "I- kl i (k+loi)PI PkJ/EC

From Proposition 3.1 there exist consiatent estimates

(,Re M IT), (Z (Mc en1. ;, (T) c(TII and

on. oXc4 f),c(7)) of FC60 end 0 ,crepectively. rn

particular, S can be choaen to be i 11 /O(f)" By

k- I 41 - , (T-) a.m. tationarity,P -1 7i;~(kl)l " 1 Ok 1 l~ k a
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E(En( n I(.k - 2 ik+l 2
k) U? Zr~ U+ kul Remark 2:

Although in Proposition 3.2 Fy and P. are required
for n-k41 . T-c(T)

to be Gaussian, the same result can be proved if they

belong to (regular) parametric families of distributions
where . - expectation under F n(1 ,* T

c (TI '+ Iwhose parameters can be estimated consistently.
n+I~ ~ ~ ~ .(),S.ncT n~cT)

r+,c(If),,e( ) , c(T)) and o,(Xn+ , c(TT ).

4. An Empirical Dayes Estimate Using Model A with Unknown

Therefore, we need only show Parameters

In general, a step-function signal can be either

2k+1 2 2k+1 2 deterministic or stochastic and therefore Model A, or even
lime(k+l. k-11"I Pk) -.i 2 (2(pk+lXI I - k ;)2

the general model, can fail to be satisfied. Why then should

Obviously, we consider these models? The basic idea is that it is

hoped the unknown signal would resemble a "typical" real-

2k+I2k+Iization of these models with properly assigned Parameters
or distribu ions. Indeed, this is a possible interpretation

2k1 of the empirical Dayes idea. The most famous example is
Sin e 'k l Uk ,llX

1  ) is bounded by m x(1;1,lXl ..... 1Xlk lI)
,

the James-Stein estimate which shows som superiority to

lie (E fU 12k )  Pk~ )2 . ( Itxkal U )
2  

the classical estimate of the mean of a msultivariate
8 kYl 1 A k41 normal distribution .

by the dominated convergence theorem, a It is almost impossible to produce a sensible estimate

Nmark 1 of the signal without any information about the structure

of the signal end/or the noise. Nence. our first assumptionThis proof of Proposition 2.2 ~lolt establishes the

uniform asymptotic optimality of is that thie noise is Gaussian white noise. One main reason
to have the Gaussian assuptioa is that it is hard toestimate of 

1
n for k~l'n? -c(f) and k larg~te.

distinguish outliers from Jumps if the noise has a heavy

tailed distribution. Puthermore, if the step-function

I -----------... 4~.. ...
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Siqnal has many Jumps, the noise variance cannot be well

estimated. Indeed, the noise variance in Model A is

not identifiable without further information. For instance, o(a1Xl+c,.aXT c) fala (Xl0.... X)

the observation process (xN ) is i.i.d. N (0,11 when

(p,#,a.o ) - (1,0,1,0) or (p,0,0,1) . So. we make the o,(aXI+C.....aX T+C) - lel . T(X )

second assumption that the rate of Jump in the signal is

at moat p0  where p 0  is a specified number between 0 and since Model A is time reversible, we have

and 1. Proposition 4.1
EB

As the next step in generalizing our estimation Tha empirica ys estimator of u., n , is

procedure, let us assume that Model A applies with un- translation invariant, scale invariant and time reversible.

known parameters p,.,o, and apply maximum likelihood That is,

to estimate theme parameters. To be more precise, we

estimate the signal On as follows. First, fit Model A ;n a+c...aX T C) -a ;7 (X...XT) + c

to the observations Xi(I<i4T) by finding the maximum

likelihood estimates (ML) , and ;, with the

constraint that p I P. W3et, estimate On by en (Xl'***XT - CT-n I 
1
f"'

1
T- ......

(4.1) (n .I The computation of the MIE can be very time-

consuming. A naive method may require 0(2 ) operations

where to stands for empirical 35yes. to compute the likelihood for each quadruple (p,,,oc).

Since the NLE satisfy, (for constants a f 0,c), We present in Proposition 4.2 a representation of the

likelihood function which reduces the nmber of operations

;(axi +c..... X51+c) . p;(
1 

..... fX) to the order of T
2 . 

Since the log likelihood L(p,e.v.qjXI)

satisfies

14.2) i(a2 +c' . . X+c) - JotRI .. ) a c
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(43 (,Bco;T L(.~ /,l('T
.3) L(P.8.o.%,I) - I(p,O.a/a.,,h ,' - T log o r.-p, n),k(0.l +

where V. - (X -P/oc T(l' 
1vhr ' X-}% we ned only consder Lp0o1X)

Lt a ; fo c where E19L2  the convolution of law L, with L2" 0etS 0 and S. -I 1 Xk  for I -c n < T.

lok.1 1  - vnthuhPooiin42suqsaawyt optPrp~Tton1. 5. An Approximation to the Likelihood and the Pseudo 14LE-

Lf.00,; TfX lolf n+ l I 1 Even though Proposition 4.2 suggests a way to computeL~p.0.c.l~x1  X1) I nt p+ .-1 n

where the likelihood with 0(T
2
) operations, it is still time-

consuming to compute the MLE without further reduction in

L(X1 ) N(0.o 
2 +

1), computation. Therefore it is desired to find a more

. n a n -n-k I efficient way to approximate the likelihood. Ie will make

(44) X Ix1 -I- (-P) 1 ()- 4 1 use of an idea of Harrison and Stevens (1976) to develop

an approximation procedure which reduces the number of

operations to the order of T. This idea has been used and
pH(0.o 41) Justified in Tao (1982).

We approximate i(Xn 1 I X ) as follows. Again, assume

=.I A (n are defined in Preposition 4.2 of Too (1962).meapoite L,+ )asflw.Agnsue
(t a e ( - 8.0 and ot - I for simplicity. in Section 5 of YaoPofof Pro~postion 4.2 2

(1962), * (an, t is introduced to approximte Ln ( n)
Vls need only derive (4.4). Howver, this is a imple here 0n and 2 are defined recursvely. Since

consequMncs of Proposition 4.2 of Too (19621 and the

following identity. L ( It, X (l-p(iuniX)GN (0,1) + p(O*2+l)

L(Xn+ I"-) - L(un+l + %+
1  1 we are natrally led to approximate byx ) by

(l-p) f(q(nnTl) + P"(0.0 12).

L ineII 1 l N(N.1) Wo we can approximate the log likelihood L(p.O.0tX)

(l-p)i(unX,) + p N(O,c2)1 gN(0.11 by use of Proposition 4.2 and the above approximation and

denote this approximate log likelihood by T(pe ,0 . 0,x1

It should be noted that this approximation is exact

5-a
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when p is 0 or 1, for Model A is a Gaussian

system when p is 0 or 1. Now we propose to measure 0.24 z exp(-1.44) exp(L-L)< exp(l.58)- 4.85

this approximation in terms of the Kullback information is very high in the worst case under Model A. This sugqests

between exp(L) and exp(L) under Model A. More that the approximation will yield reasonably good results.

precisely, we will treat We shall define the pseudo MLE as the

values of the parameters which maximize L subject to

(5.1) 1 (P, ,) z-E( p,9,0ILtP,goo;X l)-L(Peoo Xi)] P I- P
0
. Then we estimate Un by

as a measure of how well L Is approximated by 5. ote ;1n C.,, , n 1

.that
6. Simulation on mirical Raes Estimators

In the last section, we have introduced, for the sake

(5.2) 1 K(P'(,)Cd - 1 E80'/CIof computation, u
n  

which is an approximation to

In order to evaluate the performance of 
t
n' we carried

Us considered 63 cases where

out the following computer simulations on an HP 3000.

We considered 21 deterministic signal sequences
pt(0.02, 0.05,0.1, 0.2, 0.4,0.6, 0.6) ,at(0.5, 1,2,3,4,5,7,10,15) . ,(i)3 flnt 0(~~0 ~rl.Frec

(n ) of length T - 20 (1<n20, 1<21). For each
0 - 0 and a. - 1. The I . were estimated by use of 9J.- f

S-C ando~ 1 Th I er esimaed y se f sm-signal sequence, we generated 100 smples of Gaussian

ulation with a computer (HP 3000) where 400 samples of site se of Garancan

size T - 20 were generated for each case. 
The results

In defining ;n' we estimated the parameters of

are presented in Table 5.1. Model A by use of pseudo maximum likelihood. It is

According to Table 5.1, e(-) .4 nd SOEL-IVl 0.46.
r e (-) 0.14, D-interesting to see how well the method of moments can do

Here M9(Y) is the standard deviation of random variable
co.ared to the pseudo mximum likelihood method. it is

1. 8, also interesting to see how much the additional information

< -or. I can contribute to estimating Un"
-1.4e Erb ,-i -tha 1-t) th i e -L. i s89(,-i 1.36

___ Th probability that the likelihood ratio expEL-i-) satisfies



-20- -21-

Hence, we considered the P3 = maxsin(P4 ,0.2),O), 63= 0- 03 max( 04'0). '3 I

following four estimators of Un .  and P4  04 satisfy

(i) Estimator I - Un , P0 - 0.2

~T 2/. 32~ +2+
(ii) Estimator 2 - This is defined in the same way nil n 4
as Estimator I except with one more constraint UE T-1

T-l
in the pseudo maximum likelihood estimation of the x /T-l 2 + (l2p4)04

parameters. 1-P

(iii) Estimator 3 - z I I whr We use the averaqe of mean squared errors ({1SE) as

(pI. 1 .01 .o1cli n where the criterion. The simulation results are presented in

Pl - max(miin(p 2 ,0.2),O). 1 1 (the sample mean), Table 6.1 where we also present the mean and standard

aI - max( 2.0), at1 - max( .2,.0) and p 2 ,0 2 ,o 2  deviation of o c the pseudo NLE of Cc"

satisfy Note:
All the four estimators have one common property.

2 2 2 2 That is ,they first estimate Pe,0*,0 and then estimate

nI X/T -X + a2+0 TUn by the correspondinq Bayes estimate E(p.O.C.0d (Un X1)

In the simulation above, we actually computed the approximate
n1 n /(T_l) B 2 + 2 ayes estimate (see Yao (1982), Section 5) instead of the

exact one.

-2 2Remarks: (Based on Table 6.1)
X n~n'2/lT.2 - f2 + (1-P 2 )

2
a 2

2
.

n .2 (1) Rouqhly speakinq, when the number of juipa

increases,the ANSE of n increases. When the size of

(iv) Estimator 4 - 1(p O ) ) where JuW, incre as. th ANSE of u first Increases end then

decreases. For when the Bile Of Juips is moderate (i.e.
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compaetiable with the noise) it Is hard to tell where jumps

take place and to take appropriate action. This property References

is similar to that of the Bayes estimator. (See Remark

1 of Section 7 in Yao (1982)). H1] Harrison. P. J. and Stevens, C.P. (1976). Bayesian
(2) Estimator 2 (;n ) is better than Estimator 3. forecasting. J. Roy. Stat. Soe. B 38. 205-247

This implies that the method of pseudo maximum likelihood (with discussion).

is significantly better than the method of moments in

finding suitable parameter values. 121 Philipp, W. and Stout, W. (1975). Almot Su'te

(3) Estimator I is just slightly worse than Estimator r1sau ARce PAinsiptes 60 Paatiat Sum 04 eakty

2. So the information about the noise variance is not Pependent Rndom Vastidbtet. her. Math. Soc. Mem.

very Important for estimating the signal unless the rate No. 161.

of change in the signal is high. In that case, it is

hard to estimate or well. 131 Robbine, H. (19641. The Empirical Bayes approach

(4) The empirical Bayes estimator, Un' is robust to statistical decision problems. Ass. Oath. Stdtit.

against the signals' behavior. However, it is not known 35, 1-20.

how to deal with cases Involving non-Gaussian noise which

may introduce outliers under the veil of jips. 141 Ya, Y.-C. (1942). Estimation in tk Pkeseact oi

(5) When the prior information, the rate of change Noise 04 a Sigsat which is rat Exccpt 4ea jumps -

- P0. is not correct, ;n' may be misleading, although Pant 1, A Baye ata Study. Tech. Rapt. own 25,

Our limited simulations do not indicate so. Statist. Center, MIT, Cambridge, MA.

(6) It is Interesting that ;,*, the pseudo MLE

of ae estimates or well with smll bias. This to

eseentially due to the information p - p 0 .

ANNE o e l l i l I I I i I
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AERLndix

In the following we only treat one case, i.e.

Proof of (3.1) and (3.2) in Proposition 3.1

It is not difficult to See by applying the Geal- tin u n. - &as for I

Koksma strong law of large numbers (Philipp and Stout I .I

(1975), Appendix 1) that we need only show and the rest can be established similarly.

ti U 1 =E u am. < u < 4 n 0 , if there exists k such that
y n-l n -1 " n _ssk 

uhta

n < 'k <n
* 

t

an vn~nt - By 
2  

otherwise

endT n~na t

oIs n, 0 a - (EY)
2 , 

if there exists k such thatUn n+l  
1 1+1l~ a.*. t a+ <, 4u+un

n 1 nk 
< 
n+t

For example, Since 0 , otherwise
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Table 51 Kullback Information between exp(L) and expiL)

% m - a. under Model A
T n- 1

The upper and lower figures are E(L-L) and SD(L-L), respectively

p 02 .05 .1 .2 .4 .6 .8

.022 .012 .001 .001 .001 .000 .000
.5

.174 .106 .072 .038 .012 .004 .001

.055 .044 .033 .006 .003 .002 .000
1

.334 .302 .255 .151 .074 .020 .001

.099 .117 .040 .021 .012 .000 .000
2

.427 .478 .360 .265 .109 .046 .011

.105 .121 .092 .045 .008 .003 .000
3

.430 .427 .397 .282 .124 .054 .018

.103 .136 .075 .052 .009 .004 .000
4

.418 .448 .409 .325 .141 .062 .017

.090 .101 .093 .057 .012 .005 .000
S

.426 .419 .385 .302 .157 .07S .020

.0ss .071 .009 .027 .021 .000 .000
7

.376 .369 .370 . 98 .1SS .066 .024

.0S7 .069 .103 .043 .029 .000 .002
10

.345 .360 .384 .308 .151 .072 .025

.051 .042 .0S .029 .012 .005 .000
.352 .334 1314 .304 .164 .676 .11



Table 6.1 The A4SE of the Estimators over 100 Samples a

,Sig'w.I quuoaaw pobt.
Hagt of Eat. 1 Mat.2 Eat. 3 bst. 4 r.,. + 9(;,) sbD1%.)

1 0 none .071(.012) .059(.008) .124(.02S) .067(.009) .0 .943 .166

2 0.l 10 .229(.012) .2191.011) .3S2(.024) .2S1(.009) .1 .949 .196

3 0,3 10 .254(.018) .241(.017) .670(.058) .385(.033) .1 .930 .180

4 0,5 10 .107(.019) .185(.019) .486(.050) .189(.018) .1 .970 .165

S 0,1 15 .204(.008) .197(.008) .314(.027) .197(.007) .1 .961 .162

6 0,3 15 .301(.024) .272(.019) .796(.0541 .305(.036) .1 .944 .204

7 0,2,4 4,10 .370(.017) .361(.016) .8021.054) .610(.040) .15 .936 .220

a 0,3,0 7,14 .407(.030) .371(.025) .9471.071) .642(.060) .IS .916 .258

9 0,3,0 5,15 -305(.131) .380(.027) .952(.078) .780(.067) .15 .913 .222

10 0,4,6 5,15 .356(.022) .350(.022) .793(.070) .440(.031) .15 .944 .198

a The number in parentheses next to an entry is the estimated stahdard error for that entry.

This column is the ANSE of the estimator using the averages of the data points between
successive tim points of change.

The estimated standard error of the estimated 9(O,' ) 1- 30(-')/10.

Table ,.I - Continued

11 0,4.6 8.13 .205(.020) .303(.018) .600(.043) .375.024) .15 .944 .189

12 0.1,2.3 4,10,16 .348(.023) .3081.017) .729(.041) .493(.032) .2 .997 .204

13 0.3,6.9 4,10,16 .477(.027) .466(.025) .766(.051) .504(.031) .2 1.047 .254

14 0,5,10,15 4,10,16 .328(.032) .314(.031) .720(.046) .305(.032) .2 .908 .185

15 0,1,0,1 4,10,16 .290(.007) .265(.008) .365(.026) .259(.008) .2 1.014 .180

16 0,3,0,2 4,10,16 .53S(.038) .434(.022) .904(.052) .693(.05) .2 .980 .314

17 0,1,3,4,8 3,7,12,16 .426(.018) .415(.017) .907(.021) .578(.039) .25 1.014 .220

18 D,3,-3,6,0 3,7,12,16 .378(.022) .366(,023) .994(.034) .364(.022) .25 .961 .200

19 .509(.021) .526(.022) .175(.063) .729(.042) 1 1.024 .222

20 .9351.024) .931.022) 1.3111.085) 2.1241.033) 1 1.339 .260

21 .054(.024) .836t.023) 1.037(.045) 1.920(.035) 1 1.23 .20

1: Signal 19 is the following. un - 0.5(n-1), I n f 20

Is Signal 20 is the following. un * n-I, I 'fi 11: n - 21 - n, 12 4 n < 20

It Signal 21 is the following. un - 10-0.1 (n-11)2 1 < n < 20
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